Large Sarge
18th August 2010, 04:09 AM
http://www.spwb.com/articles/brainarticle.html
A Heads-Up Look at Brain Health
by Randy Drake
edical advances of today and the very near future — gene therapies, nanotechnology, targeted monoclonal antibodies, cloning, and more — will allow us to “repair†or “replace†damaged and diseased body parts and raise the average life expectancy to 100 years or more. The problem with this magnificent advancement is the studies which suggest that 40% of those reaching 85, and nearly 100% of those reaching 120, will be senile. Of what use is living to a ripe old age if we cannot enjoy it, or even be aware that we’re alive?
Brain Studies
Some 2000 years ago the ancient Greeks attributed all behavior to four temperaments: Hot, Dry, Moist, and Cold. The Romans attributed all symptoms and behaviors to four body fluids, which they called humors: Phlegm, Yellow Bile, Black Bile, and Blood. While Hippocrates, Galen, and hundreds of others slowly advanced the understanding of human anatomy and physiology, the brain sat unstudied for over 1500 years. It was not until the 18th and 19th centuries that brain anatomical science progressed to the point that four distinct lobes were identified, with specific behaviors and body functions ascribed to each.
Over the next 100 years, biochemical and pharmaceutical researchers discovered four separate brain chemicals, called neurotransmitters, that were used by the brain. Somewhat later, four distinct brain waves, or patterns of electrical activity, were discovered and correlated with specific lobes in the brain. Only fairly recently have researchers started to understand this most mysterious organ.
From the 1950s to present, psychiatrists and phychologists have described four broad classifications of human behavior: extroverted or introverted, intuitive or sensing, thinking or feeling, and perceiving or judging. If you suspect that these four primary behaviors can be assigned to a specific lobe, you’d be right!
Brain malfunctions, as manifested by psychiatric problems or unacceptable behavior, can be largely attributed to an imbalance of neurotransmitters within the brain. Unfortunately, discovering these levels within a living brain was not an easy task. (If you think a spinal tap is a risky procedure, just imagine a “brain tap†gone wrong!) What was needed was a simple, noninvasive test to measure the levels of neurotransmitters in a functioning human brain. Various scans of the brain can be employed, but they cannot show actual brain function. For example, an MRI of a patient’s brain right before death and right after death would be identical.
After 25 years of painstaking work, neurological researchers have finally uncovered a long-hidden piece of the puzzle — the relationship between the brain’s chemicals and the brain’s electricity. This discovery allowed clinicians to diagnose brain dysfunction with a simple, noninvasive assessment of the brain’s electrical activity. By measuring the four electrical components of brain activity, doctors can determine the levels of the four neurotransmitters and initiate treatment protocols to correct a deficiency of one or more of them.
Correlation Times Four
Four temperaments; four humors; four neurotransmitters; four lobes; four classes of human behavior; four brain waves; four electrical measurements of brain function. How do these relate? The following table shows the relationship between brain lobes, neurotransmitters, behaviors or personality types, and electrical measurements.
Brain lobes Dominant Neuro-
transmitter (NT) Behavior
(Personality Type) Electrical
Measurement
high NT low NT
parietal acetylcholine intuitive sensing speed
frontal dopamine extrovert introvert voltage
temporal GABA judging perceiving rhythm
occipital serotonin feeling thinking synchrony
The table above shows the electrical measurements used to determine neurotransmitter levels. As a person ages, his brain goes through a slow decline, or “electropause,†in which the voltage, speed, rhythm, and synchrony change. By measuring these four electrical characteristics, a person’s “brain age†can be determined, which may be younger or older than typical for his chronological age. More importantly, a deficiency in one or more neurotransmitters can be detected and steps taken to restore normal levels.
A computerized diagnostic device called a Brain Electrical Activity Map (BEAM) measures these four values and creates a “picture†of the brain’s electrical activity. It records and tracks the progression of the positive wave created in the brain by an external stimulus, such as a sound (auditory evoked potential) or a flash of light (visual evoked potential).
Speed. A “normal†brain takes about 300 msec (milliseconds) plus a person’s age in years to “think.†This is the measurement of the time delay, or latency, between a stimulus given and the recognition of that stimulus in the brain. As the latency increases (speed decreases), a person moves from mild cognition deficits to severe dementia.
Voltage. A “normal†brain creates an electrical potential of about 10 µv (microvolts). The voltage generated in a person’s brain is related to his ability to concentrate, and low voltage can result in memory impairment, obesity, addictions, or schizophrenia.
Rhythm refers to the regularity of a person’s brain waves. Like cardiac rhythm, the more smooth the rhythm, the better. Brain-wave arrhythmias yield a spectrum of disorders from anxiety and recurring headaches to manic depression and seizures.
Synchrony is a comparison of the electrical activity in each of the hemispheres of the brain. It is common for a person to be dominant in one hemisphere or the other, but a severe imbalance in the electrical activity of the right vs. left hemisphere can lead to sleep disorders, IBS, somatization disorders, or phobias.
Acetylcholine
Review: A “normal†brain takes about 300 msec (milliseconds) plus a person’s age in years to “think.†This is the measurement of the time delay, or latency, between a stimulus given and the recognition of that stimulus in the brain. As the latency increases (speed decreases), a person moves from mild cognition deficits to severe dementia.
Acetylcholine-associated disease states
A diagnostic evaluation of a person’s brain speed can give objective evidence of disturbances in cognition, memory, attention, and behavior. After subtracting the patient’s age, the baseline latency measurement indicates the following: 300 msec is “normalâ€; 350 msec indicates mild to moderate disturbances in cognitive function (“muddled thinkingâ€); 360 to 370 msec indicates ADD or variability of attention, errors of omission or commission, and delayed reaction time; 380 msec is typically found in Parkinson patients; 420 msec is the threshold for Alzheimer disease, with increasing latency as the dementia progresses. Early detection of deficiencies in the speed at which the brain operates can allow early intervention to slow or reverse the decline, possibly delaying or preventing the onset of Alzheimer and other dementias.
Beyond detecting a frank disease state associated with severe acetylcholine deficiency, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.
The acetylcholine-dominant personality
Acetylcholine is produced in the parietal lobes, which are responsible for thinking functions such as language processing, intelligence, and attention. People with an excess of acetylcholine (about 17% of the world’s population) are adept at working with their senses and view the world in sensory terms. They are quick thinkers, highly creative, and open to new ideas. Flexibility, creativity, and impulsivity open them up to trying almost anything, as long as it offers the promise of excitement and something new; they are not afraid of failure. They love to travel and have a quest for lifelong learning. These people also tend to be extremely sociable, even charismatic. They love making new friends and put a lot of energy into all of their relationships, whether at work, at home, or in the community. They are eternally optimistic, romantic with their significant other, and attentive to the needs of their children. They are quite popular with a broad range of people. People with extremely high levels of acetylcholine, however, risk giving too much of themselves to others, even to the point of being masochistic. They may feel that the world is taking advantage of them, or they may become paranoid. Too much acetylcholine can drive a person into isolation.
The acetylcholine-deficient personality
Low levels of acetylcholine result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the dementia- producing deficiencies mentioned earlier. These personality traits can, in fact, manifest when the acetylcholine level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one neurotransmitter is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.
The eccentric. The absence of thought connections to other people and the world makes this person’s behavior seem odd. The eccentric usually steers away from human interaction and keeps himself isolated. Outwardly, he appears bland and inexpressive. When even mildly stressed, however, he can become a danger to himself and others.
The perfectionist. This person is usually hard working, detail oriented, devoted, and exacting. Self-discipline is a hallmark of this personality type, which can be either a plus or a minus, depending on the severity of the imbalance and which other neurotransmitter is dominant. This person can be an excellent worker, or he can be rigid and obsessive to the point that nothing is actually accomplished. The perfectionist’s life is usually lacking in enjoyment, relaxation, and warmth, which can make that person unapproachable.
Dopamine
Review: A “normal†brain creates an electrical potential of about 10 µv (microvolts). The voltage generated in a person’s brain is related to his ability to concentrate, and low voltage can result in memory impairment, obesity, addictions, or schizophrenia.
Dopamine-associated disease states
A person’s ability to concentrate can be directly correlated with his dopamine level. A diagnostic evaluation of the voltage in a person’s brain can give objective evidence of disturbances in concentration and memory. Low dopamine levels can be involved in difficulty performing routine tasks, a variety of sexual disorders such as loss of libido or anorgasmy, various addictions, from caffeine to opiates, and decreased physical activity due to fatigue. Obesity is a common result of the combination of sugar cravings and low physical activity associated with suboptimal dopamine levels in the brain.
Brain voltage can vary within the range of 0 µv (dead) to 20 µv (super concentration), with 10 µv being classified as “normal.†The voltage range correlates as follows: 0-2 µv is typically found in cocaine babies; 2-4 µv can indicate severe addictions, severe attention deficit disorder, or schizophrenia; 5-6 µv indicates a chronic brain disorder; 7 µv is found in those with moderate addictive behavior, such as caffeine and sugar cravings; 8-9 µv is typical for mild to moderate memory and thinking disturbances, including mild attention deficit; 10 µv is “normalâ€; and above 10 µv indicates an increased ability to concentrate, even to the rejection of external stimuli at the high end of the range.
Drugs that increase dopamine levels have been used as adjunctive therapy for schizophrenia and opiate addiction. Beyond detecting and treating frank disease states associated with a severe dopamine deficiency, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.
The dopamine-dominant personality
Dopamine is the source of the brain’s power and energy. People with an excess of dopamine (about 17% of the world’s population) thrive on energy. They are likely to be strong-willed individuals who know what they want and how to get it. They are highly rational, more comfortable with facts and figures than feelings and emotions. They can be self-critical, but do not accept criticism or negative feedback from others. These people function well under stress, focusing intently on the task at hand. They are tireless and typically need less sleep than average. Strategeic thinking, invention, and problem-solving are the hallmarks of these individuals. In their personal lives, they like activities related to knowledge and intellect. They can be competitive in sports, but prefer individualized sports over group sports. They tend to establish personal relationships easily, but may have trouble nurturing them. As highly rational people, they have trouble understanding that many people believe feelings are more important than reason. They have a tendency to want to exert control over their spouse and children, and a successful marriage depends on the loyalty and goodwill of the spouse.
People with extremely high levels of dopamine, however, can be overly intense, driven, and impulsive. They may turn to violence as a way of creating controlled environments of excitement and power. Teens may be driven to shoplifting, street racing, or date rape. Criminals — especially repeat sexual offenders — often have extreme dopamine levels and a heightened libido that frequently accompanies it.
The dopamine-deficient personality
Low levels of dopamine result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the disease- producing deficiencies mentioned earlier. Personality shifts can, in fact, manifest when the dopamine level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.
Dopamine production determines the brain’s power, as measured by voltage. As the voltage becomes suboptimal, the person literally slows down, mentally and physically. Minor deficiencies can produce a range of mental and physical symptoms, such as mild memory loss, mild depression (“the bluesâ€), panic disorder, PMS, insomnia, fatigue, mild hypertension, nicotine addiction, and obesity. Sexual side effects, such as loss of libido and difficulty achieving orgasm, are common among people with a dopamine deficiency.
The previous two neurotransmitters — acetylcholine and dopamine — can be thought of as the brain’s “on†switch, providing energy, power, and speed. The next two — gamma-aminobutyric acid (GABA) and serotonin — function as the brain’s “off†switch, providing calmness, rest, and sleep. A balance of the “on†and “off†neurotransmitters is necessary for proper brain function.
GABA
Review: Rhythm refers to the regularity of a person’s brain waves. Like cardiac rhythm, the more smooth the rhythm, the better. Brain-wave arrhythmias, or dysrhythmias, yield a spectrum of disorders from anxiety and recurring headaches to manic depression and seizures.
GABA-associated disease states
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. It has a calming, stabilizing effect. It controls the brain’s rhythm, which allows a person to function at a steady pace and prevent him from becoming too “hyper.†As the brain’s GABA level declines, brain waves begin to become less rhythmic. This can bring on a multitude of symptoms, both psychological and physical.
Mild brain-wave dysrhythmias can produce anxiety and its accompanying physical manifestations: restlessness, sweating, cold or clammy hands, butterflies in the stomach, and a lump in the throat. Other physical symptoms that can appear with a moderate GABA deficiency include carbohydrate cravings, an abnormal sense of smell, and unusual allergies. As GABA levels further decrease, anxiety can become more pronounced and produce attention-deficit disorders, PMS, flushing, trembling, hypertension, cystitis, and gastrointestinal disorders. At the most extreme deficiency, this can become full-blown panic attacks, manic depression, migraine headaches, hyperventilation, palpitations, tachycardia, blurred vision, tinnitus, twitching, and seizures. Advanced psychological symptoms can include severe delusions, feelings of dread, and a short temper that can progress into full-blown rage reactions and violence. Chronic marijuana and alcohol abuse can signal an acute GABA deficiency.
Beyond detecting and treating frank disease states associated with GABA deficiencies, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.
A Heads-Up Look at Brain Health
by Randy Drake
edical advances of today and the very near future — gene therapies, nanotechnology, targeted monoclonal antibodies, cloning, and more — will allow us to “repair†or “replace†damaged and diseased body parts and raise the average life expectancy to 100 years or more. The problem with this magnificent advancement is the studies which suggest that 40% of those reaching 85, and nearly 100% of those reaching 120, will be senile. Of what use is living to a ripe old age if we cannot enjoy it, or even be aware that we’re alive?
Brain Studies
Some 2000 years ago the ancient Greeks attributed all behavior to four temperaments: Hot, Dry, Moist, and Cold. The Romans attributed all symptoms and behaviors to four body fluids, which they called humors: Phlegm, Yellow Bile, Black Bile, and Blood. While Hippocrates, Galen, and hundreds of others slowly advanced the understanding of human anatomy and physiology, the brain sat unstudied for over 1500 years. It was not until the 18th and 19th centuries that brain anatomical science progressed to the point that four distinct lobes were identified, with specific behaviors and body functions ascribed to each.
Over the next 100 years, biochemical and pharmaceutical researchers discovered four separate brain chemicals, called neurotransmitters, that were used by the brain. Somewhat later, four distinct brain waves, or patterns of electrical activity, were discovered and correlated with specific lobes in the brain. Only fairly recently have researchers started to understand this most mysterious organ.
From the 1950s to present, psychiatrists and phychologists have described four broad classifications of human behavior: extroverted or introverted, intuitive or sensing, thinking or feeling, and perceiving or judging. If you suspect that these four primary behaviors can be assigned to a specific lobe, you’d be right!
Brain malfunctions, as manifested by psychiatric problems or unacceptable behavior, can be largely attributed to an imbalance of neurotransmitters within the brain. Unfortunately, discovering these levels within a living brain was not an easy task. (If you think a spinal tap is a risky procedure, just imagine a “brain tap†gone wrong!) What was needed was a simple, noninvasive test to measure the levels of neurotransmitters in a functioning human brain. Various scans of the brain can be employed, but they cannot show actual brain function. For example, an MRI of a patient’s brain right before death and right after death would be identical.
After 25 years of painstaking work, neurological researchers have finally uncovered a long-hidden piece of the puzzle — the relationship between the brain’s chemicals and the brain’s electricity. This discovery allowed clinicians to diagnose brain dysfunction with a simple, noninvasive assessment of the brain’s electrical activity. By measuring the four electrical components of brain activity, doctors can determine the levels of the four neurotransmitters and initiate treatment protocols to correct a deficiency of one or more of them.
Correlation Times Four
Four temperaments; four humors; four neurotransmitters; four lobes; four classes of human behavior; four brain waves; four electrical measurements of brain function. How do these relate? The following table shows the relationship between brain lobes, neurotransmitters, behaviors or personality types, and electrical measurements.
Brain lobes Dominant Neuro-
transmitter (NT) Behavior
(Personality Type) Electrical
Measurement
high NT low NT
parietal acetylcholine intuitive sensing speed
frontal dopamine extrovert introvert voltage
temporal GABA judging perceiving rhythm
occipital serotonin feeling thinking synchrony
The table above shows the electrical measurements used to determine neurotransmitter levels. As a person ages, his brain goes through a slow decline, or “electropause,†in which the voltage, speed, rhythm, and synchrony change. By measuring these four electrical characteristics, a person’s “brain age†can be determined, which may be younger or older than typical for his chronological age. More importantly, a deficiency in one or more neurotransmitters can be detected and steps taken to restore normal levels.
A computerized diagnostic device called a Brain Electrical Activity Map (BEAM) measures these four values and creates a “picture†of the brain’s electrical activity. It records and tracks the progression of the positive wave created in the brain by an external stimulus, such as a sound (auditory evoked potential) or a flash of light (visual evoked potential).
Speed. A “normal†brain takes about 300 msec (milliseconds) plus a person’s age in years to “think.†This is the measurement of the time delay, or latency, between a stimulus given and the recognition of that stimulus in the brain. As the latency increases (speed decreases), a person moves from mild cognition deficits to severe dementia.
Voltage. A “normal†brain creates an electrical potential of about 10 µv (microvolts). The voltage generated in a person’s brain is related to his ability to concentrate, and low voltage can result in memory impairment, obesity, addictions, or schizophrenia.
Rhythm refers to the regularity of a person’s brain waves. Like cardiac rhythm, the more smooth the rhythm, the better. Brain-wave arrhythmias yield a spectrum of disorders from anxiety and recurring headaches to manic depression and seizures.
Synchrony is a comparison of the electrical activity in each of the hemispheres of the brain. It is common for a person to be dominant in one hemisphere or the other, but a severe imbalance in the electrical activity of the right vs. left hemisphere can lead to sleep disorders, IBS, somatization disorders, or phobias.
Acetylcholine
Review: A “normal†brain takes about 300 msec (milliseconds) plus a person’s age in years to “think.†This is the measurement of the time delay, or latency, between a stimulus given and the recognition of that stimulus in the brain. As the latency increases (speed decreases), a person moves from mild cognition deficits to severe dementia.
Acetylcholine-associated disease states
A diagnostic evaluation of a person’s brain speed can give objective evidence of disturbances in cognition, memory, attention, and behavior. After subtracting the patient’s age, the baseline latency measurement indicates the following: 300 msec is “normalâ€; 350 msec indicates mild to moderate disturbances in cognitive function (“muddled thinkingâ€); 360 to 370 msec indicates ADD or variability of attention, errors of omission or commission, and delayed reaction time; 380 msec is typically found in Parkinson patients; 420 msec is the threshold for Alzheimer disease, with increasing latency as the dementia progresses. Early detection of deficiencies in the speed at which the brain operates can allow early intervention to slow or reverse the decline, possibly delaying or preventing the onset of Alzheimer and other dementias.
Beyond detecting a frank disease state associated with severe acetylcholine deficiency, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.
The acetylcholine-dominant personality
Acetylcholine is produced in the parietal lobes, which are responsible for thinking functions such as language processing, intelligence, and attention. People with an excess of acetylcholine (about 17% of the world’s population) are adept at working with their senses and view the world in sensory terms. They are quick thinkers, highly creative, and open to new ideas. Flexibility, creativity, and impulsivity open them up to trying almost anything, as long as it offers the promise of excitement and something new; they are not afraid of failure. They love to travel and have a quest for lifelong learning. These people also tend to be extremely sociable, even charismatic. They love making new friends and put a lot of energy into all of their relationships, whether at work, at home, or in the community. They are eternally optimistic, romantic with their significant other, and attentive to the needs of their children. They are quite popular with a broad range of people. People with extremely high levels of acetylcholine, however, risk giving too much of themselves to others, even to the point of being masochistic. They may feel that the world is taking advantage of them, or they may become paranoid. Too much acetylcholine can drive a person into isolation.
The acetylcholine-deficient personality
Low levels of acetylcholine result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the dementia- producing deficiencies mentioned earlier. These personality traits can, in fact, manifest when the acetylcholine level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one neurotransmitter is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.
The eccentric. The absence of thought connections to other people and the world makes this person’s behavior seem odd. The eccentric usually steers away from human interaction and keeps himself isolated. Outwardly, he appears bland and inexpressive. When even mildly stressed, however, he can become a danger to himself and others.
The perfectionist. This person is usually hard working, detail oriented, devoted, and exacting. Self-discipline is a hallmark of this personality type, which can be either a plus or a minus, depending on the severity of the imbalance and which other neurotransmitter is dominant. This person can be an excellent worker, or he can be rigid and obsessive to the point that nothing is actually accomplished. The perfectionist’s life is usually lacking in enjoyment, relaxation, and warmth, which can make that person unapproachable.
Dopamine
Review: A “normal†brain creates an electrical potential of about 10 µv (microvolts). The voltage generated in a person’s brain is related to his ability to concentrate, and low voltage can result in memory impairment, obesity, addictions, or schizophrenia.
Dopamine-associated disease states
A person’s ability to concentrate can be directly correlated with his dopamine level. A diagnostic evaluation of the voltage in a person’s brain can give objective evidence of disturbances in concentration and memory. Low dopamine levels can be involved in difficulty performing routine tasks, a variety of sexual disorders such as loss of libido or anorgasmy, various addictions, from caffeine to opiates, and decreased physical activity due to fatigue. Obesity is a common result of the combination of sugar cravings and low physical activity associated with suboptimal dopamine levels in the brain.
Brain voltage can vary within the range of 0 µv (dead) to 20 µv (super concentration), with 10 µv being classified as “normal.†The voltage range correlates as follows: 0-2 µv is typically found in cocaine babies; 2-4 µv can indicate severe addictions, severe attention deficit disorder, or schizophrenia; 5-6 µv indicates a chronic brain disorder; 7 µv is found in those with moderate addictive behavior, such as caffeine and sugar cravings; 8-9 µv is typical for mild to moderate memory and thinking disturbances, including mild attention deficit; 10 µv is “normalâ€; and above 10 µv indicates an increased ability to concentrate, even to the rejection of external stimuli at the high end of the range.
Drugs that increase dopamine levels have been used as adjunctive therapy for schizophrenia and opiate addiction. Beyond detecting and treating frank disease states associated with a severe dopamine deficiency, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.
The dopamine-dominant personality
Dopamine is the source of the brain’s power and energy. People with an excess of dopamine (about 17% of the world’s population) thrive on energy. They are likely to be strong-willed individuals who know what they want and how to get it. They are highly rational, more comfortable with facts and figures than feelings and emotions. They can be self-critical, but do not accept criticism or negative feedback from others. These people function well under stress, focusing intently on the task at hand. They are tireless and typically need less sleep than average. Strategeic thinking, invention, and problem-solving are the hallmarks of these individuals. In their personal lives, they like activities related to knowledge and intellect. They can be competitive in sports, but prefer individualized sports over group sports. They tend to establish personal relationships easily, but may have trouble nurturing them. As highly rational people, they have trouble understanding that many people believe feelings are more important than reason. They have a tendency to want to exert control over their spouse and children, and a successful marriage depends on the loyalty and goodwill of the spouse.
People with extremely high levels of dopamine, however, can be overly intense, driven, and impulsive. They may turn to violence as a way of creating controlled environments of excitement and power. Teens may be driven to shoplifting, street racing, or date rape. Criminals — especially repeat sexual offenders — often have extreme dopamine levels and a heightened libido that frequently accompanies it.
The dopamine-deficient personality
Low levels of dopamine result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the disease- producing deficiencies mentioned earlier. Personality shifts can, in fact, manifest when the dopamine level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.
Dopamine production determines the brain’s power, as measured by voltage. As the voltage becomes suboptimal, the person literally slows down, mentally and physically. Minor deficiencies can produce a range of mental and physical symptoms, such as mild memory loss, mild depression (“the bluesâ€), panic disorder, PMS, insomnia, fatigue, mild hypertension, nicotine addiction, and obesity. Sexual side effects, such as loss of libido and difficulty achieving orgasm, are common among people with a dopamine deficiency.
The previous two neurotransmitters — acetylcholine and dopamine — can be thought of as the brain’s “on†switch, providing energy, power, and speed. The next two — gamma-aminobutyric acid (GABA) and serotonin — function as the brain’s “off†switch, providing calmness, rest, and sleep. A balance of the “on†and “off†neurotransmitters is necessary for proper brain function.
GABA
Review: Rhythm refers to the regularity of a person’s brain waves. Like cardiac rhythm, the more smooth the rhythm, the better. Brain-wave arrhythmias, or dysrhythmias, yield a spectrum of disorders from anxiety and recurring headaches to manic depression and seizures.
GABA-associated disease states
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. It has a calming, stabilizing effect. It controls the brain’s rhythm, which allows a person to function at a steady pace and prevent him from becoming too “hyper.†As the brain’s GABA level declines, brain waves begin to become less rhythmic. This can bring on a multitude of symptoms, both psychological and physical.
Mild brain-wave dysrhythmias can produce anxiety and its accompanying physical manifestations: restlessness, sweating, cold or clammy hands, butterflies in the stomach, and a lump in the throat. Other physical symptoms that can appear with a moderate GABA deficiency include carbohydrate cravings, an abnormal sense of smell, and unusual allergies. As GABA levels further decrease, anxiety can become more pronounced and produce attention-deficit disorders, PMS, flushing, trembling, hypertension, cystitis, and gastrointestinal disorders. At the most extreme deficiency, this can become full-blown panic attacks, manic depression, migraine headaches, hyperventilation, palpitations, tachycardia, blurred vision, tinnitus, twitching, and seizures. Advanced psychological symptoms can include severe delusions, feelings of dread, and a short temper that can progress into full-blown rage reactions and violence. Chronic marijuana and alcohol abuse can signal an acute GABA deficiency.
Beyond detecting and treating frank disease states associated with GABA deficiencies, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.