PDA

View Full Version : Magnesium: The Lamp of Life – Chlorophyll, DNA, DHEA and Cholesterol



Serpo
26th November 2013, 11:17 PM
I get magnesium through the dolomite I put on our vegetable garden

It seems to be very deficient in foods generally however and may be the cause of everything ,in health that is.

I am obviously exaggerating when I say "everything",but the percentages as a causative factor for a broad range of health problems is large.

Magnesium: The Lamp of Life – Chlorophyll, DNA, DHEA and Cholesterol

Posted by Dr Sircus on December 8, 2009 | Filed under Magnesium (http://drsircus.com/medicine/magnesium), Medicine (http://drsircus.com/medicine)






http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image002_0003.jpg
Inside chlorophyll is the lamp of life and that lamp is magnesiumd
The capture of light energy from the sun is magnesium dependent. Magnesium is bound as the central atom of the porphyrin ring of the green plant pigment chlorophyll. Magnesium is the element that causes plants to be able to convert light into energy and chlorophyll is identical to hemoglobin except the magnesium atom at the center has been taken out and iron put in. The whole basis of life and the food chain is seen in the sunlight-chlorophyll-magnesium chain. Since animals and humans obtain their food supply by eating plants magnesium can be said to be the source of life for it is at the heart of chlorophyll and the process of photosynthesis.
A huge step forward for early life was the development of chlorophyll, a molecule that captures light energy from the sun in a process called photosynthesis. Chlorophyll systems convert energy from visible light into small energy-rich molecules easy for cells to use. The harnessing of the energy of visible light led to a vast expansion of early life-forms. Fossilized layers, three and half billion years old, have been found with evidence of blue-green algae that lived on top of tidal rocks.
http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image004_0002.jpg
Chlorophyll a (minus the alkyl side chain for clarity) with its magnesium core. Chlorophyll is recognized as one of nature’s riches sources of important nutrients where its rich green pigment is vital for the body’s rapid assimilation of amino acids and for the synthesis of enzymes.
Magnesium is needed by plants to form chlorophyll which is the substance that makes plants green. Without magnesium sitting inside the heart of chlorophyll, plants would not be able to take nutrition from the sun because the process of photosynthesis would not go on. When magnesium is deficient things begin to die. In reality one cannot take a breath, move a muscle, or think a thought without enough magnesium in our cells. Because magnesium is contained in chlorophyll it is considered an essential plant mineral salt.
Without chlorophyll, plants are unable to convert sunlight and carbon dioxide. There is no life without magnesium.
http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image005.png
http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image007_0000.jpg
http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image008_0001.jpg
Magnesium is a necessary element for all living organisms both animal and plant. Chlorophyll is structured around a magnesium atom, while in animals, magnesium is a key component of cells, bones, tissues and just about every physiological process you can think of. Magnesium is primarily an intracellular cation; roughly 1% of whole-body magnesium is found extracellularly, and the free intracellular fraction is the portion regulating enzyme pathways inside the cells. Life packs the magnesium jealously into the cells, every drop of it is precious.
Insulin and Magnesium

Magnesium is necessary for both the action of insulin and the manufacture of insulin.
Magnesium is a basic building block to life and is present in ionic form throughout the full landscape of human physiology. Without insulin though, magnesium doesn’t get transported from our blood into our cells where it is most needed. When Dr. Jerry Nadler of the Gonda Diabetes Center at the City of Hope Medical Center in Duarte, California, and his colleagues placed 16 healthy people on magnesium-deficient diets, their insulin became less effective at getting sugar from their blood into their cells, where it’s burned or stored as fuel. In other words, they became less insulin sensitive or what is called insulin resistant. And that’s the first step on the road to both diabetes and heart disease.
Insulin is a common denominator, a central figure in life as is magnesium. The task of insulin is to store excess nutritional resources.This system is an evolutionary development used to save energy and other nutritional necessities in times (or hours) of abundance in order to survive in times of hunger. Little do we appreciate that insulin is not just responsible for regulating sugar entry into the cells but also magnesium, one of the most important substances for life. It is interesting to note here that the kidneys are working at the opposite end physiologically dumping from the blood excess nutrients that the body does not need or cannot process in the moment.
Controlling the level of blood sugars is only one of the many functions of insulin. Insulin plays a central role in storing magnesium but if our cells become resistant to insulin, or if we do not produce enough insulin, then we have a difficult time storing magnesium in the cells where it belongs. When insulin processing becomes problematic magnesium gets excreted through our urine instead and this is the basis of what is called magnesium wasting disease.
There is a strong relationship between magnesium and insulin action. Magnesium is important for the effectiveness of insulin. A reduction of magnesium in the cells strengthens insulin resistance. [1] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn1),[2] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn2)
Low serum and intracellular magnesium concentrations are associated with insulin resistance, impaired glucose tolerance, and decreased insulin secretion. [3] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn3),[4] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn4),[5] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn5) Magnesium improves insulin sensitivity thus lowering insulin resistance. Magnesium and insulin need each other. Without magnesium, our pancreas won’t secrete enough insulin–or the insulin it secretes won’t be efficient enough–to control our blood sugar.
Magnesium in our cells helps the muscles to relax but if we can’t store magnesium because the cells are resistant then we lose magnesium which makes the blood vessels constrict, affects our energy levels, and causes an increase in blood pressure. We begin to understand the intimate connection between diabetes and heart disease when we look at the closed loop between declining magnesium levels and declining insulin efficiency.
Though it would be a long stretch of the longest giraffe’s neck to compare insulin with chlorophyll we are walking a trail at the very nuclear core of life. It’s the magnesium trail and we find to our surprise that it takes us into intimate contact with the very structure and foundation of life. The dedication of this chapter is to the beauty of magnesium, to its meaning in life, in health and in medicine.
We were talking about chlorophyll and now insulin and putting magnesium in-between. Walking further along is the DHEA magnesium story and the DNA magnesium story. And then there is the cholesterol magnesium story. Every part of life is in love with magnesium except allopathic medicine which just cannot accept it in all its light, flame and beauty. Thousands of years ago the Chinese named it the beautiful metal and they were seeing something pharmaceutical medicine does not want to see for there is little money to be made from something so common.
Magnesium and DNA

http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image010_0000.jpg
Mechanism of electric conductivity in DNA. Magnesium (silver circles)
with no surrounding water supplies holes (light-blue circles) to the DNA, which
is an insulator. The supplied holes move along the DNA (light-blue line).
Magnesium ions play critical roles in many aspects of cellular metabolism. Magnesium stabilizes structures of proteins, nucleic acids, and cell membranes by binding to the macromolecule’s surface and promote specific structural or catalytic activities of proteins, enzymes, or ribozymes. Magnesium has a critical role in cell division. It has been suggested that magnesium is necessary for the maintenance of an adequate supply of nucleotides for the synthesis of RNA and DNA.
Magnesium plays a critical role in vital DNA repair proteins. Magnesium ions synergetic effects on the active site geometry may affect the polymerase closing/opening trends. Single-stranded RNA are stabilized by magnesium ions.
Distinct structural features of DNA, such as the curvature of dA tracts, are important in the recognition, packaging, and regulation of DNA are magnesium dependent. Physiologically relevant concentrations of magnesium have been found to enhance the curvature of dA tract DNAs. The chemistry of water activated by a magnesium ion is central to the function of the DNA repair proteins, apurinic/apyrimidic endonuclease 1 (Ape1) and polymerase A (Pol A). These proteins are key constituents of the base excision repair (BER) pathway, a process that plays a critical role in preventing the cytotoxic and mutagenic effects of most spontaneous, alkylation, and oxidative DNA damage.[6] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn6)
Magnesium ions help guide polymerase selection for the correct nucleotide extends descriptions of polymerase pathways.[7] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn7)
Dr. Paul Ellis informs us that, “Magnesium ions are central to the function of the DNA repair proteins, apurinic/apyrimidic endonuclease 1 (Ape1) and polymerase A (Pol A). These proteins are key constituents of the base excision repair (BER) pathway, a process that plays a critical role in preventing the cytotoxic and mutagenic effects of most spontaneous, alkylation, and oxidative DNA damage.”[8] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn8) DNA polymerase is considered to be a holoenzyme since it requires a magnesium ion as a co-factor to function properly. DNA-Polymerase initiates DNA replication by binding to a piece of single-stranded DNA. This process corrects mistakes in newly-synthesized DNA.
DHEA – Magnesium – Cholesterol

http://cdn3.drsircus.com/wp-content/uploads/2013/01/clip_image012.jpg
Low levels of DHEA are associated with loss of “pathology preventing” signaling between immune system cells.[9] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn9)
Dr. James Michael Howard says, “Cancer and infections are both increasing and one of the basic reasons is reduced availability of DHEA, which stems from magnesium deficiency.” Also known as “mother of all steroid hormones” DHEA is converted in the body into several different hormones, including estrogen and testosterone. DHEA appears to restore immune balance and stimulate monocyte production (the cells that attack tumors), B-cell activity (the cells that fight disease-causing organisms), T-cell mobilization (infection fighting T-cells have DHEA binding sites), and protection of the thymus gland (which produces T-cells).[10] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn10) The data suggest that DHEA has a role in the neuro-endocrine regulation of the antibacterial immune resistance.[11] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn11)
All steroid hormones are created from cholesterol in a hormonal cascade. Cholesterol, that most maligned compound, is actually crucial for health and is the mother of hormones from the adrenal cortex, including cortisone, hydrocortisone, aldosterone, and DHEA. Cholesterol cannot be synthesized without magnesium and cholesterol is a vital component of many hormones. These hormones are interrelated, each performing a unique biological function with them all depending on magnesium for their function. Aldosterone interestingly needs magnesium to be produced and it also regulates magnesium’s balance.[12] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn12)
Dr. Mildred S. Seelig wrote, “Mg2+-ATP is the controlling factor for the rate-limiting enzyme in the cholesterol biosynthesis sequence that is targeted by the statin pharmaceutical drugs, comparison of the effects of Mg2+ on lipoproteins with those of the statin drugs is warranted. Formation of cholesterol in blood, as well as of cholesterol required in hormone synthesis, and membrane maintenance, is achieved in a series of enzymatic reactions that convert HMG-CoA to cholesterol. The rate-limiting reaction of this pathway is the enzymatic conversion of HMG CoA to mevalonate via HMG CoA. The statins and Mg inhibit that enzyme. Mg has effects that parallel those of statins. For example, the enzyme that deactivates HMG-CoA Reductase requires Mg, making Mg a Reductase controller rather than inhibitor. Mg is also necessary for the activity of lecithin cholesterol acyl transferase (LCAT), which lowers LDL-C and triglyceride levels and raises HDL-C levels.”[13] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn13)
Desaturase is another Mg-dependent enzyme involved in lipid metabolism which statins do not directly affect.
DHEA is a steroid hormone produced by the adrenal gland and ovaries and converted to testosterone and estrogen. After being secreted by the adrenal glands, it circulates in the bloodstream as DHEA-sulfate (DHEAS) and is converted as needed into other hormones. Magnesium chloride, when applied transdermally, is reported by Dr. Norman Shealy to increase DHEA.[14] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_edn14) Dr. Shealy has determined that when the body is presented with adequate levels of magnesium at the cellular level, the body will begin to naturally produce DHEA and also DHEA-S.
Transdermal is the ultimate way to replenish cellular magnesium levels. Every cell in the body bathes and feeds in it and even DHEA levels are increased naturally, according to Dr. Norman Shealy
This effect is not seen in oral or intravenous magnesium administration and Dr. Shealy has a patent pending in this area. It is thought that transdermal application interacts in some way with the fatty tissues of the skin to create the affect. Studies link low levels of DHEA to chronic inflammation, immune dysfunction, depression, rheumatoid arthritis, Type-II diabetic complications, greater risk for certain cancers, heart disease and osteoporosis.
[1] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref1) Paolisso G, Scheen A, D’Onofrio F, Lefebvre P: Magnesium and glucose homeostasis. Diabetologia 33:511–514, 1990[Medline]

[2] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref2) Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R: Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21:1024–1029, 1993

[3] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref3)Ma J, Folsom AR, Melnick SL, Eckfeldt JH, Sharrett AR, Nabulsi AA, Hutchinson RG, Metcalf PA: Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid wall thickness: the ARIC study. J Clin Epidemiol 48:927–940, 1985

[4] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref4) Rosolova H, Mayer O Jr, Reaven GM: Insulin-mediated glucose disposal is decreased in normal subjects with relatively low plasma magnesium concentrations. Metabolism 49:418–420, 2000[Medline]

[5] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref5) Resnick LM, Gupta RK, Gruenspan H, Alderman MH, Laragh JH: Hypertension and peripheral insulin resistance: possible mediating role of intracellular free magnesium. Am J Hypertens 3:373–379, 1990[Medline]

[6] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref6) Magnesium Increases the Curvature of Duplex DNA That Contains dA Tracts. Bozidar Jerkovic and Philip H. Bolton. Chemistry Department, Wesleyan University. Biochemistry, 40 (31), 9406 -9411, 2001. 10.1021/bi010853j S0006-2960(01)00853-4

[7] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref7) Critical Role of Magnesium Ions in DNA Polymerase ?’s Closing and Active Site Assembly. Linjing Yang, Karunesh Arora, William A. Beard, Samuel H. Wilson, Tamar Schlick. Department of Chemistry and Courant Institute of Mathematical Sciences,
New York University

[8] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref8) http://www.sysbio.org/capabilities/nmr/nih/magnesium.stm

[9] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref9) Verthelyi D, Petri M, Ylamus M, Klinman DM. Retroviral Immunology Section, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA. Lupus. 2001;10(5):352-8.

[10] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref10) Le Vert, Suzanne, HGH: The Promise of Eternal Youth (New York: 1997, Avon Books), pages 25, 26, 93, 106, 153, 172. ISBN: 0-380-78885-3

[11] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref11) J. Med. Microbiol. 1999; 48: 425)

[12] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref12) A deficiency in magnesium causes hyperplasia of the adrenal cortex, elevated aldosterone levels, and increased extracellular fluid volume. Aldosterone increases the urinary excretion of magnesium; hence, a positive feedback mechanism results, which is aggravated since there is no renal mechanism for conserving magnesium.

[13] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref13) Journal of the American College of Nutrition, Vol. 23, No. 5, 501S-505S (2004) Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals Andrea Rosanoff, PhD and Mildred S. Seelig, MD Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn (M.S.)

[14] (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life#_ednref14) http://www.betterway2health.com/cwr-dhea.htm (Last visited December 11, 2005)



http://cdn3.drsircus.com/images/imva_dr_sircus_photo.jpgDr. Mark Sircus, Ac., OMD, DM (P)

Director International Medical Veritas Association
Doctor of Oriental and Pastoral Medicin


http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life


http://www.naturalnews.com/024847_magnesium_medicine_insulin.html (http://drsircus.com/medicine/magnesium/magnesium-the-lamp-of-life)

Serpo
26th November 2013, 11:40 PM
There is a strong link between vitamin D (http://www.wisegeek.com/what-is-vitamin-d.htm) and magnesium (http://www.wisegeek.com/what-is-magnesium.htm). Magnesium is a co-factor for vitamin D, meaning that magnesium is needed for the body to process vitamin D. It can be obtained through the diet by eating leafy green vegetables.

Magnesium is a mineral necessary to humans that is mainly obtained through the diet. It is found in nuts, whole grains, and green leafy vegetables. This mineral has many roles in the body such as encouraging the relaxation and normal functioning of muscles. It is also involved in the metabolism of carbohydrates, fats and proteins, and essential nutrients (http://www.wisegeek.com/what-are-nutrients.htm), such as calcium and vitamin D. Symptoms of a magnesium deficiency (http://www.wisegeek.com/what-is-magnesium-deficiency.htm) are varied and include muscle weakness and tremors, arrhythmia (http://www.wisegeek.com/what-is-arrhythmia.htm) of the heart, depression, nausea, and elevated blood pressure (http://www.wisegeek.com/what-is-blood-pressure.htm).

Vitamin D is essential to many necessary functions in the human body. For example, vitamin D is involved in bone health, muscle heath, immune health, blood pressure and blood sugar (http://www.wisegeek.com/what-is-blood-sugar.htm) regulation, as well as calcium and phosphorus metabolism. Humans are able to synthesize their own vitamin D by exposing unprotected skin to direct sunlight, but it can also be found in dietary supplements and enriched foods (http://www.wisegeek.com/what-are-enriched-foods.htm).


Magnesium is considered the most important co-factor in vitamin D absorption, meaning that the human body needs magnesium to properly metabolize and use vitamin D. Even if a person is consuming sufficient amounts of vitamin D, without enough magnesium, vitamin D cannot be effectively metabolized and production of active vitamin D metabolites is reduced. Too little magnesium can result in side effects reminiscent of low vitamin D intake such as poor bone health. If an individual is having problems increasing his levels of vitamin D, even after taking vitamin D supplements, this may be due to a magnesium deficiency.

This connection between vitamin D and magnesium can be seen in some children suffering from rickets (http://www.wisegeek.com/what-is-rickets.htm). Rickets is a disease, most common to children, that affects the bones and is caused by a vitamin D deficiency. To remedy rickets, patients are given supplements of vitamin D, yet in some cases, when patients have low levels of magnesium, this vitamin D supplementation is not successful. In these cases, supplementing both vitamin D and magnesium has helped patients to recover.

It can be difficult to raise the body's level of magnesium. Taking magnesium supplements is not always effective, as magnesium is most readily absorbed when it is found in food. Eating magnesium rich foods, especially seeds and green leafy vegetables, is the best way to raise magnesium levels in the body.


Related wiseGEEK Articles How Do I Choose the Best Magnesium Vitamin? (http://www.wisegeekhealth.com/how-do-i-choose-the-best-magnesium-vitamin.htm)
What Are the Signs of a Vitamin B Overdose? (http://www.wisegeek.com/what-are-the-signs-of-a-vitamin-b-overdose.htm)
What Are the Benefits of Vitamin D3? (http://www.wisegeek.com/what-are-the-benefits-of-vitamin-d3.htm)
What Are the Symptoms of a Magnesium Overdose? (http://www.wisegeek.com/what-are-the-symptoms-of-a-magnesium-overdose.htm)
What Are the Side Effects of Magnesium? (http://www.wisegeek.com/what-are-the-side-effects-of-magnesium.htm)
What Is Magnesium Lotion? (http://www.wisegeek.com/what-is-magnesium-lotion.htm)
What Is Magnesium Deficiency? (http://www.wisegeek.com/what-is-magnesium-deficiency.htm)



http://www.wisegeek.com/what-is-the-connection-between-vitamin-d-and-magnesium.htm

Cebu_4_2
27th November 2013, 02:42 AM
Finally got to this, great info. If it wasn't cold and snowey I would do a foot bath right about now with magnesium salts.

Serpo
27th November 2013, 02:49 AM
Its interesting how a lack of magnesium affects vit D absorption.......

Twisted Titan
27th November 2013, 04:30 AM
The ideal is to eat green leafy foods from your garden but aside from that what brand of magnesium suppliment is recomended

Cebu_4_2
27th November 2013, 05:17 AM
I'll take them leafy things and raise you these rocks:

Magnesium: the essentials
Magnesium is a grayish-white, fairly tough metal. Magnesium is the eighth most abundant element in the earth's crust although not found in it's elemental form. It is a Group 2 element (Group IIA in older labelling schemes). Group 2 elements are called alkaline earth metals. Magnesium metal burns with a very bright light.
Magnesium is an important element for plant and animal life. Chlorophylls are porphyrins based upon magnesium. The adult human daily requirement of magnesium is about 0.3 g day-1.

Table: basic information about and classifications of magnesium.


Name (http://www.webelements.com/periodicity/name/): Magnesium
Symbol (http://www.webelements.com/periodicity/name/): Mg
Atomic number (http://www.webelements.com/periodicity/atomic_number/): 12
Atomic weight (http://www.webelements.com/periodicity/atomic_weight/): 24.3050 (6)
Standard state (http://www.webelements.com/periodicity/standard_state/): solid at 298 K
CAS Registry ID (http://www.webelements.com/periodicity/cas_registry_id/): 7439-95-4




Group in periodic table (http://www.webelements.com/periodicity/group_number/): 2
Group name (http://www.webelements.com/periodicity/group_number/): Alkaline earth metal
Period in periodic table (http://www.webelements.com/periodicity/group_number/): 3
Block in periodic table (http://www.webelements.com/periodicity/group_number/): s-block
Colour (http://www.webelements.com/periodicity/standard_state/): silvery white
Classification (http://www.webelements.com/periodicity/classification/): Metallic




http://www.webelements.com/_media/elements/element_pictures/Mg.jpg
Small and large samples of magnesium rod like this, as well as foil and sheet, (and magnesium alloy in foil form) can be purchased from Advent Research Materials (http://www.advent-rm.com/) via their web catalogue.
Magnesium: historical information Magnesium was discovered (http://www.webelements.com/periodicity/discovery/) by Sir Humphrey Davy at 1755 in England. Origin of name (http://www.webelements.com/periodicity/discovery/): from the Greek word "Magnesia", a district of Thessaly.


In 1618 a farmer at Epsom in England attempted to give his cows water from a well. This they refused to drink because of the water's bitter taste. However the farmer noticed that the water seemed to heal scratches and rashes. The fame of Epsom salts spread. Eventually they were recognised to be magnesium sulphate, MgSO4. Black recognized magnesium as an element in 1755. It was isolated by Davy in 1808 who electrolysed a mixture of magnesia (magnesium oxide, MgO) and mercuric oxide (HgO). Davy's first suggestion for a name was magnium but the name magnesium is now used.
Sometime prior to the autumn of 1803, the Englishman John Dalton was able to explain the results of some of his studies by assuming that matter is composed of atoms and that all samples of any given compound consist of the same combination of these atoms. Dalton also noted that in series of compounds, the ratios of the masses of the second element that combine with a given weight of the first element can be reduced to small whole numbers (the law of multiple proportions). This was further evidence for atoms. Dalton's theory of atoms was published by Thomas Thomson in the 3rd edition of his System of Chemistry in 1807 and in a paper about strontium oxalates published in the Philosophical Transactions. Dalton published these ideas himself in the following year in the New System of Chemical Philosophy. The symbol used by Dalton for magnesium is shown below. [See History of Chemistry, Sir Edward Thorpe, volume 1, Watts & Co, London, 1914.]

Horn
27th November 2013, 06:40 AM
Magnesium in plantain could be directly responsible for Ponce's most interesting man in the world title.

One medium plantain is low in sodium, low in calories, zero fat, high in potassium and has 2 grams of protein. It also meets 40% of the RDA for vitamin A, 50% RDA for vitamin C and 15% for magnesium. Plantains are a good source of fiber (4 g).


http://www.healthaliciousness.com/images/chocolate.jpg
#10: Dark Chocolate

Magnesium in 100g
1 Square (29g)
1 Cup Grated (132g)


327mg (82% DV)
95mg (24% DV)
432mg (108% DV)

chud
27th November 2013, 02:57 PM
http://images.iherb.com/l/NOW-01300-0.jpg

ximmy
27th November 2013, 03:13 PM
What about Midichlorines?

oops, I mean Midi-chlorians

Bird dog
27th November 2013, 04:08 PM
I take a tri-boron plus supplement from twin labs because of this article here on the borax conspiracy http://www.health-science-spirit.com/borax.htm. It has a great combination of minerals, including Magnesium.

From the above link....


Calcium-Magnesium Metabolism
There is antagonism as well as cooperation between calcium and magnesium. About half of the total body magnesium is found in bones and the other half inside the cells of tissues and organs. Only 1% is in the blood, and the kidneys try to keep this levels constant by excreting more or less with the urine.
In contrast, 99% of calcium is in bones, and the rest in the fluid outside of cells. Muscles contract when calcium moves into the cells, and they relax when calcium is again pumped out and magnesium moves in. This cellular pump requires much energy to pump calcium out, and if cells are low in energy, then calcium may accumulate inside cells. Low cellular energy may be due to Candida, faulty sugar or fat metabolism, deficiencies, or accumulating metabolic wastes and toxins.
This then leads to only partial relaxation of the muscles with stiffness, a tendency to cramps, and poor blood and lymph circulation. The problem gets worse the more calcium moves from bones into soft tissue. Nerve cells can also accumulate calcium, leading to faulty nerve transmission, in the lens it causes cataracts, hormonal output keeps reducing as endocrine glands increasingly calcify, and all other cells become handicapped in their normal functions. In addition it causes intracellular magnesium deficiency. Magnesium is needed to activate countless enzymes, and a deficiency leads to inefficient and blocked energy production.
A further problem is that excess calcium damages the cell membrane and makes it difficult for nutrients to move in and wastes to move out. When the intracellular calcium level gets too high the cell will die.
Here we can see the importance of boron as a regulator of cell membrane functions, especially in regard to movements of calcium and magnesium. With boron deficiency too much calcium moves into the cell while magnesium cannot move inside to displace it. This is the condition of old age and of the boron-deficiency diseases leading up to it.
While in good health and especially in younger years a calcium - magnesium ratio of 2 : 1 is normal and beneficial and supplied with a good diet. But with increasing age, boron deficiency and resulting disease conditions we need progressively less calcium and more magnesium.
For boron to be fully effective in reversing tissue calcification ample magnesium is required. For elderly individuals I recommend 400 to 600 mg of magnesium together with the daily borax supplementation spaced out during the day, and with protracted joint problems additional trans-dermal magnesium. However, oral magnesium may need to be adjusted according to its laxative effect. I am doubtful whether calcium supplements are needed and beneficial, even in case of osteoporosis. In my view these individuals have plenty of calcium stored in soft tissues where it does not belong, and supplementing boron and magnesium is expected to redeposit this misplaced calcium into bones. I regard the medical focus on a high calcium intake as a prescription for accelerated aging.


http://www.twinlab.com/product/tri-boron-plus

And, not to derail the OP's thread, but the borax/boron has made a huge difference on my knees/hips in just a few weeks.