The search presented in this paper targets mostly very heavy monopoles, which cannot achieve relativistic speeds. “With the null detection, we now close the window on a connection between such hypothetical monopoles and dark matter. The resulting constraints on the flux are so low that monopoles cannot constitute the dominant amount of dark matter in the universe,” says Sebastian Schoenen, an IceCube researcher at RWTH Aachen University. Following these results, only monopoles with a mass larger than the so-called Planck mass could be responsible for a large fraction of dark matter, but this mass is above the scale predicted by GUT theories
http://icecube.wisc.edu/news/view/202
Physicists create synthetic magnetic monopole predicted more than 80 years ago
(Phys.org) —Nearly 85 years after pioneering theoretical physicist Paul Dirac predicted the possibility of their existence, an international collaboration led by Amherst College Physics Professor David S. Hall '91 and Aalto University (Finland) Academy Research Fellow Mikko Möttönen has created, identified and photographed synthetic magnetic monopoles in Hall's laboratory on the Amherst campus. The groundbreaking accomplishment paves the way for the detection of the particles in nature, which would be a revolutionary development comparable to the discovery of the electron.
Due to the fact that every whirl carries an artificial magnetic field, their creation or destruction occurs at the point of merging. "This means that an artificial magnetic monopole has to sit on this point," describes Prof. Rosch, "whenever two magnetic whirls merge in the experiment, an artificial magnetic monopole has flown through surface."
http://phys.org/news/2013-05-artific...monopoles.html